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INTRODUCTION

• As ne increased in Alcator C-Mod, divertor goes through:

1. Low recycling,

2. High recycling,

3. Death Ray,

4. Detachment.

• For last 3, Te < 10 eV ⇒ ions coupled to atoms.

– ⇒ Must examine both plasma and neutral transport,

– Impurities as well.

• Death Ray (DR) pleads for kinetic treatment.

– Defined by: ptot at divertor > upstream pressure.

• LaBombard (1996 PSI) suggested DR
due to radial momentum transport by neutrals.

• Loarte (1996 PSI) said: ⊥ viscosity.

• Here: radial transport of momentum by plasma,

– Persists even if η⊥ = 0.



EXPERIMENTAL CONDITIONS AND SIMULATION

• Alcator C-Mod shot 950308012, t = 0.78 s.

• Model with B2-EIRENE,

– B2: multi-species, 2-D fluid plasma transport,

– EIRENE: multi-species, 3-D Monte Carlo neutral transport.

• Use SONNET to generate mesh from EFIT experimental eq’m.

• Simulations include carbon,

– Important in power balance,

– But not to density or momentum balance here.

• Classical ‖ transport,

• Anomalous ⊥ transport,

– D⊥ = 0.2 m−2 s−1,

– χi = χe = 0.01 m−2 s−1,

– η⊥ = 0.2 m−2 s−1.

• Input power: Pe = Pi = 0.4 MW.

• Recycling coefficient: 0.9.

• Resulting profiles:

– ne, Te agree qualitatively with data,

– Clear divertor over-pressure ↔ Death Ray.

• Chord integrated Dα signals don’t match well,

– Have too little recombination here?

– Divertor Te too high?

– ⇒ seek simulations with lower Te.
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Fig. 1. Comparison of simulated and measured electron 
density and temperature at the outboard midplane
("upstream") and divertor.
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Fig. 2. Simulated total pressure (isotropic plus 
dynamic, summed over species) at the outboard
midplane ("upstream") and divertor.
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Fig. 3. Comparison of simulated and measured chord integrated
D

α
 emission as seen by a divertor viewing detector array.



DEATH RAY INVESTIGATION

• Parallel momentum balance:
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• Drop Fth, Ff .

• Ignore carbon.

• Rewrite schematically:
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• Without diffusion, viscosity, and neutral source ⇒ ptot = constant,

• DR ↔ positive right-hand side.

• Neutral momentum source:

– Mostly negative here,

– Te ≥ 10 eV ⇒ neutrals confined close to target,

– ⇒ Most high speed CX products hit wall,

– Rest spread out.

– Might be different if Te lower or varied more radially.

• Radial flux:

– DR caused by ∂Γ⊥/∂y < 0,

– Occurs over same flux surfaces as DR!



DISCUSSION

• Can change η⊥ without globally altering results,

• ⇒ set η⊥ = 0.

• Find:

– Virtually indistinguishable results!

– DR moved in 0.4 mm.

• Now: Γ⊥ = mnvu‖,

• Negative gradient appears connected with ∂v/∂y < 0 region,

– v → 0 in some areas.

– Corresponds to flat spot in ne profile,

– Seen in experimental data as well!

– Connected with geometry, neutrals?

– ⇒ Study effect of geometry variations on continuity eq’n.

• Vesey (1995 APS) found DR to be ubiquitous,

• Goes away in some runs, e.g.,

1. Pin = 0.6 MW instead of 0.8,

2. Or, reduce recycling coeff. to 0.8.



• Look at latter case:

– DR clearly absent,

– Radial gradient of momentum flux positive everywhere,

– v never vanishes,

– No flat spot on ne profile,

– Because much lower atom density ⇒ ne closer to exponential.

– High recycling timeslice of 950308012
shows no flat spot in ne either!

• Other experimental observations (LaBombard, 1996 PSI):

– DR holds steady,

∗ Same here.

– DR moves with separatrix,

∗ See ties with separatrix phenomena,
∗ But, plate geometry important, too.
∗ ⇒ simulate shifted geometries.

– DR occurs where Te > 6 eV & on hottest surface,

∗ ⇒ seek simulations where this is true,
∗ Especially lower Te ⇒ more neutral.
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Fig. 4. Simulated total pressure and electron density at the 
outboard midplane ("upstream") and divertor in a run with
a recycling coefficient of 0.8.
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Fig. 5. Radial profiles of (a) divertor - midplane pressure
difference, (b) perpendicular flux of parallel momentum,
and (c) momentum sources due to perpendicular flux 
(S

⊥
) and to neutrals (S

n
).   The values for the baseline

(DR) and reduced recycling (No DR) runs are shown in 
each frame.  The perpendicular flux from the zero
viscosity (No η

⊥
) run is displayed in (b).



CONCLUSIONS

• B2-EIRENE qualitatively reproduces DR conditions in C-Mod,

• Neutral transport not a signficant factor,

– Te too high,

– Need simulations with lower Te.

• Radial plasma transport of u‖ is responsible,

– But not just ⊥ viscosity,

– Connected to vanishing of radial flow,

– And flat spot in ne(r).


